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INTRODUCTION

The performance of line-scan imaging systems, such as TV cameras and
optical-mechanical scanners, has received appreciable attention in the litera-
ture (refs. 1 to 14). The emphasis of these investigations usually has been
on resolution, detection, recognition, identification, and accuracy of recon-
struction of spatial detail. The most useful and widely accepted analysis
approach that evolved from these investigations (most notably through the
efforts of Schade, refs. 4 and 5) is to apply Fourier methods to the evalua-
tion of optical imaging processes. The importance of this approach is that
the MTF and noise characteristics of optical and electronic components can be
measured with practical instrumentation and conveniently combined with each
other to predict and evaluate the performance of electro-optical systems.

In this paper we explore information theory as a logical extension of
Fourier methods to assess the performance of line-scan imaging systems, with
emphasis on systems which use a digital communication link for transmitting
data. Information theory is used to derive a single figure of merit that
accounts for the statistical properties of the radiance field, the spatial
response (PSF or MTF) and noise characteristics of the imaging system, and the
effects of sampling and quantization due to the line-scan and digitization
process. It treats the image that is reconstructed from the digital data as
a received message which gives information about the incident radiance and
accounts for degradations as loss of information.

Fellgett and Linfoot (refs. 15 and 16) first applied Shannon's (ref. 17)
theory of information to the assessment of image quality. They formulated the
information capacity and density of photographic images and accounted for the
degradation of image quality caused by blurring and random noise. These formu-
lations have been applied to the evaluation of photographic film by Linfoot
(ref. 18), Jones (ref. 19), and Shaw (ref. 20), and of radiation detectors by
Jones (ref. 21). Huck and Park (ref. 22) and Halyo and Stallman (ref. 23)
extended the formulations to include performance characteristics of line-scan
imaging systems by accounting for degradations caused by aliasing and quanti-
zation. Aliasing errors are generated when spatial details of the radiance
field are insufficiently sampled, and quantization noise is generated when the
discrete (i.e., sampled analog) signal is digitized.

These formulations based on information theory are constrained by the
assumption that the signal and noise amplitudes are Gaussian, ergodic, additive,
and statistically independent. Nevertheless, it is of interest to explore
information as a figure of merit for assessing the performance of line-scan
imaging systems and, in particular, for optimizing their efficiency to acquire
and transmit information. This interest arises because the quantity of data
that is transmitted and the amount of information that the data can contain are
inevitably related by sampling and quantization. The relationship between



information and data suggests the concept of information efficiency (i.e., ratio
of information density to data density) as a useful design criterion.

DEFINITIONS, ASSUMPTIONS, AND FORMULATIONS

Figure 1 illustrates a linear, space-invariant imaging process that con-
verts the continuous radiance field L(x,y) into a digital signal s(x,y;X,¥;K).

Electronic
noise
Radiance field N(y) Analog signal Discrete signal Digital signal
L(x,y) sx,y) s{x,y;X,Y) s0,YiX,Y; K)
Electronic s T o
Lens Photosensor filter ampling Quantization
Tgix,.y} Tp (x,y) Tely) m(§,¥) K levels

Figure 1.- Model of line-scan imaging process.

In the first of the following four subsections, we formulate the conversion of
the radiance field into a discrete signal s(x,v;X,Y¥). In the second section

we define properties of the digital signal s(x,y;X,¥;K) that is generated when
the discrete signal s(x,y:X,Y) 1is quantized. 1In the third section we formu-
late the information and data density of the digital signal, and in the fourth
section we define and discuss information efficiency.

The information density of an image that is reconstructed from discrete
data is a function of the image reconstruction process as well as of the imaging
system. We account for image reconstruction by a low-pass filter that coincides
with the sampling passband. This reconstruction filter would be optimum - in
the sense of transferring information from the output of the imaging system to
the image display without loss of information - if the signal were band-limited.
We do not investigate optimum reconstruction for signals that are not band-

limited.

Imaging Process

The conversion of a continuous radiance field L(x,y) 1into a discrete
signal s(x,y:;X,Y) can be defined by the expression

X
s(x,y:X,Y) = {K L(x,y) » T(x,y) + N(y) » [§(x) Ta(y)]} U_L<;(’§> M)

The function T(x,y) is the PSF (point-spread function or spatial response)
of the imaging system given by



T(x,y) = T (X,y) * Tp(x,y) # [8(x) Te(y)]

where Tg (x,Yy), Tp(x,y), and 6 (x) Tao{y) are the PSF's of the lens, of the
spot intensity profile (for TV cameras) or photosensor aperture shape (for
optical-mechanical scanners), and of the electronic filter, respectively. The
steady-state gain of the conversion of radiance into the photosensor signal
{see the Appendix) is denoted by K, the electronic noise by N{(y), convolution
by =, and the sampling function (ref. 24) by

XY ZS 25 S(x - Xm, y - ¥Yn)

m=-wo pn=-o

"1

)3 2 ofien

m=-'co N=-~c©
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L ]

Rectangular (Cartesian) coordinates (x,y) in the object plane are used as
reference for the imaging coordinates. The sampled signal s(x,y;X,¥) is an
infinite array of 6 functions on a rectangular lattice with spacing X and Y
in the x- and y-directions, respectively.

Salient properties of the process defined by equation (1) are often more
convenient to evaluate in the frequency domain rather than in the spatial domain.
We denote the functions g(V,») and g(x,y) as the Fourier transform pairs
given by

o
SS g(x,y) e 12M(Ux+y) ax gy

a(U:w) =
o
g(x,y) = SS §(V,w) el2T (XV+yW) gu daw

The Fourier transform of -equation (1) yields



S(0,wiX,¥) = [K LUw) T + B T « x¥ |]](xv,¥w) (2a)

where T(U,w) is the MTF (modulation-transfer function or spatial frequency
response) given by

T(U,W) = Tp(Uw) Tpluw) Te(w)

and (from ref. 24)

o0 aC
Xy z Z (XU - m, Yw - n)

xy ||| (xv,yw)
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Equation (2a) can be equivalently written as

S(u,w;X,Y) = §(V,w) + §5(V,w;X,Y) (2b)
where §(U,w) is the signal component prior to sampling as given by

3(U,w) = K L(U,0) T(U,w) + NW) Te(w) (3)

and S5(V,w;X,Y) represents the sideband components of §(V,w;X,Y) that
are generated by sampling as given by

~ A m n
sa(V,w;:X,Y) = Z Z s(u - - w - ;) (4)
X

== Nn=-0

(m:n)?‘(oro)




We use the inverse Fourier transform of the frequency passband of the
sampling lattice with spacing (X,Y), or briefly the sampling passband, as the
reconstruction function. The sampling passband is given by the rectangle

function (ref. 24)
1 1
: (1ot < L tol < 1)
2X 2Y

0 (elsewhere)

: M(xv,mw) =

The corresponding reconstruction r(x,y) is the inverse Fourier transform of
T(U,W) = S(L,w;X,Y) IT(XV,YWw)

as given by

X - mX Yy — nY
r(x,y) = 25 25 s(mX,nY) sinc <——————) sinc (——;——-)
X

m:—w n:—m

where s(mX,nY) is the value of s(x,y;X,¥) given by equation (1).

Signal Characteristics

We assume that the radiance L(x,y) and the noise N(y) are independent
Gaussian random (stochastic) processes and designate their Wiener spectra as
¢L(U w) anad @N(w), respectively. We treat quantization n01se as if it
were additive "white" Gaussian noise with a Wiener spectrum ¢q(K)- The
Wiener spectrum @s(U W;X,Y,;K) of the digital signal S(VU,Ww;X,Y;K) can
then be expressed as

Bs (VWiX,YiK) = Dg(U,w) + &, (V0,0;K,¥) + & (w;¥) + $q4K) (5)

The term 6S(U,w), which represents the signal component centered at the
location (v,w) = (0,0), is given by

B (v,w) = K2 3y (v,w) |T(V,w) |2 (6)



This term accounts for image degradation due to blurring caused by loss of small
detail when the higher spatial frequency components of the radiance field are
attenuated by the MTF of the imaging system.

The term ¢,(V,w;X,Y), which represents the signal sideband components

mn
generated by sampling and centered at the locations (v,w) = (—,—), with
XY

{(m,n) # (0,0), is given by .

s

© o
B, (0,0;X,Y) Z z B (v -= w-- (7)
WX, = il 4 - -
a S X Y

m=-o0 n=-0co

(m,n)#(0,0)

This term accounts for image degradation due to aliasing caused by masking of
spatial detail when displaced spatial frequency components from the sampling
sidebands intrude into the image reconstruction passband.

The term &,(w;Y), which represents the sampled electronic noise at the
filter output, is given by

:I; (W:Y) E 8( - T o[’ (8)
w; = ) = = W = -
n N ¥ e ¥

It should be noted that just as undersampling of the signal frequency spectrum
generates aliasing, undersampling of the noise frequency spectrum generates
additional noise.

To model the effective noise generated by the quantization process, we
assume that (1) the discrete signal s(x,y;X,Y) is linearly quantized into K
levels over the effective range 2c0g, so that the quantum levels have a uniform ;
spacing of 2c0g/K, where

o0
052 = K2 S‘y 3>L(u,w) av aw = K202

-C0




is the maximum variance of the signal %s(v,w) among all T(V,0) such that
|T(v,w)} $1, and ¢ is a constant to be determined later; (2) the gquan-
tization error of any one sample is uncorrelated with that of any other sample;
and (3) the signal is equally likely to occur anywhere in the quantization
interval =~-cog/k to cog/k. These assumptions imply that the quantization
error n, has the uniform probability density function (refs. 25 to 27)

K "co's Cos
< nK g —

2cog K K
p(ny) =

0 (elsewhere)

In fact, a random variable that is constrained to a finite interval has a
maximum entropy when its probability density function is uniform. A signal
with the uniform probability density function p(n,) has a mean equal to zero
and a variance given by

cUs/K

2 2 1 (eos)\?
o = n p(n,) dn_ = -|—
q j; K K K 3\ «

~ca /K

Since quantization noise is uncorrelated (in the spatial domain), it has a
Wiener spectrum equal to its variance; that is,

- A 2 1 /C0s 2
dglurwik) = dgqlk) = 0g* = =|— (9)
3\ «

Information and Data Density

Let A denote a rectangular (isoplanatism) patch centered at x = y = 0.
For M 1line scans and N samples per scan in A, x and y are limited to

-XM XM -¥YN YN
— < X < = —_— <y < ~—
2 2

and the area of A is |A| = XYMN. Any function g(x,y) is then said to be
confined to A if g(x,y) = 0 for all points outside A. Furthermore, let



the spatial function g(x,y) be a second-order, stationary, Gaussian random
process that is effectively band-limited to the sampling passband TII(XVU,Yw).!
Following Shannon (ref. 17), we can define the statistical uncertainty of this
process, or the quantity of information contained in the area A (ref. 15), to
be (refs. 22 and 23)

1/2X 1/2Y
1 A
Hy = 5IAI 5 S logy [4m <I>g(u,w)] dav dw
-1/2x -1/2Y

The units of Hg are binits.

The information gained about patch A of a scene can be regarded as a
reduction in the uncertainty of the probable state of that patch. In this sense,
it can be shown that the amount of information Hj that is gained is (refs. 22

and 23)

1/2X 1/2Y
Hy = §|A| 'S S‘ logs [4m $S(U,w;X,Y;K)] dv dw
-1/2x -1/2Y
1/2X 172y
- glAl S 5 logs {4n[$a(u,w;x,Y)
-1/2X -1/2¢

+ Ohw;Y) + Og(k)]} qu dw

~

where @g(V,0;X,Y;K) is the Wiener spectrum of the digital signal as given
by equation (5). This formulation is permitted because the additive terms in
equation (5) are statistically independent. The information density, or
entropy, of the digital signal can thus be formulated as (refs. 22 and 23)

TNo attempt is made to investigate the optimization of reconstruction
filters.

8
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1/2X 1/2Y

Hi g (V,0)

hj = — =~ S 5‘ logy |1 + — — du dw (10)
2 Q5 (V,WsX,Y) + &p(wiY) + Og(K)

-1/2X -1/2¥

where 6S(U,w), aa(vuw:x,Y), sn(w;Y), and 8q(K) are given by equa-
tions (6) to (9). The units of hj are binits per square meter.

Each discrete signal s(x,y;X,Y) is quantized into K levels. Thus, the
number of distinguishable states in patch A is KMN, and the amount of data

in A is

Ia|
Hg = MN 1lo K= — 1 K
d 92 v og2

The units of Hgy are bits. The data density for nN-bit encoding, K = 2N, is

N Hg 1 n .
= — = — logyp K = — ( )
d |a| XY 2 XY

The units of hg are bits per square meter.

Information Efficiency

We define the ratio hj/hg as the information efficiency of the digital
image data. This definition of information efficiency is analogous to
Khinchin's definition of "relative entropy" as the ratio h/log m, where h
is the entropy of a test and log m is the maximum value of h for the m
different symbols of the test (ref. 28). Another analogy is Jones' definition
of "information efficiency" of a beam of light as the information capacity per
transmitted photon (ref. 29).

However, to properly interpret the information efficiency hj/hg, we must
account for an important difference between continuous and discrete entropies
(ref. 17). The data density hg is defined for a discrete random variable
(i.e., quantization levels with a uniform probability density function) for
which the entropy provides an absolute measure of randomness. The information
density h;j is defined for a continuous random variable (i.e., an analog signal
with a Gaussian probability density function) for which the entropy provides
a measure of randomness relative to an assumed standard (namely, the coordinate
system chosen with each small spatial element dx dy given equal weight). It
would be intuitively satisfying to adjust the ratio hj/hg so that the theo-
retical upper limit of information efficiency becomes unity. This upper limit
is reached for the following three conditions:



1. The Wiener spectrum of the radiance field L(x,y) 1is constant within
the sampling passband; that is,

1 1
oy 2 vl € —, o] < —
. ol < 2o ol < =
¢L(U,w)=

0 (elsewhere)

This condition represents maximum entropy within the sampling passband.

2. The imaging system has the (unrealizable) MTF

—t
NN
<
A
N —

|
-
£
A
|
N—

T, =

(elsewhere)

o

This condition prevents aliasing and blurring within the sampling passband.

For these two conditions, equation (10) reduces to the expression

h ] 1 Gsz (12)
i = — log + —
17y 72 0p2 + 02

where 052 = K20L2 is the maximum possible variance of the signal and an and

Oqz are the variances of the electronic and quantization noise, respectively.

3. The quantization intervals are very large compared with the magnitude
of the electronic noise fluctuations (i.e., Og >> Op,). Substituting equa-
tion (9) for Oqz further reduces equation (Tg) to

L 1 %"
h; = — log + —_
17 oy 2 02
1 32 1 UEK
= — logy [1 + — |~ — logy 1= (13)
2XY o2 XY c

10
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It follows by comparison of equation (13) for hj with equation (11) for
the data density hg that the information efficiency hj/hg is unity if
c = V3. This adjustment of the upper limit of the information efficiency hj/hg
to unity leads to a linear encoding of the Gaussian signal variation over a
dynamic range of —4305 to Vios, which encompasses 92 percent of the signal.

If, instead of the third condition, we assume that the quantization inter-
val is very small compared with the magnitude of the electronic noise fluctua-
tions (i.e., Oq << Op) or that the analog signal is not quantized (i.e.,

Ogq = 0), the expression for h; given by equation (12) reduces to

h 1 1 s’ 14
i = —— logz |1 + — (14)
17 2xy 72 0,2

This expression may be recognized as Shannon's channel capacity with an average
power limitation (ref. 17).

A basic assumption in formulations of the entropy of signals transmitted
through a communication channel is that the frequency of these signals can be
sufficiently band-limited. The limiting rate of information transmission (i.e.,
channel capacity) is reached for this condition when the signals approximate,
in statistical properties, white noise (Shannon's theorem 17). However, a
space-varying radiance field generally cannot be sufficiently band-limited by
the response of optical systems prior to line-scan sampling, so that aliasing
caused by insufficient sampling must be accounted for. Herein lies a basic
difference between formulations of information acquired by line-scan imaging
systems and formulations of information transmitted through communication
channels (ref. 17) or acquired by photographic film (refs. 15, 16, and 18
to 20) and radiation detectors (ref. 21).

RADIANCE AND SYSTEM MODELS
Radiance Field
We assume that the radiance field L(x,y) is both homogeneous and iso-
tropic, so that the variance of L(x,y) is independent of (x,y) and the

autocovariance (and autocorrelation) are functions only of the relative
distance (ref. 30)

r = [(x-, - x2)2 + (7 - yZ)2]1/2

between points (xy,yy) and (X2,¥2). Furthermore, we assume that the auto-
covariance of L(x,y) is

"



®K(r) = 02 r

so that the associated Wiener spectrum, which is the circularly symmetric Fourier

transform (i.e., the Hankel transform) of %y (r), is

. 2mu 20,2

$L(u,10) =9 (P) =
[v + (2mu,p)2]3/2

where 02 = V2 4 w2 (see fig. 2).

b v

ib) Example: py/y=1/3.

2
%‘16 L(U,(D)

(c) Example: pr/y=1.

Figure 2.- Wiener spectrum of radiance field.
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Equation (16) can be derived by assuming that L(x,y) is a random set of
two-dimensional pulses whose width r obeys the Poisson probability density
function with the (expected) mean width u, and whose magnitude obeys the
Gaussian probability density function with the (expected) mean wuj and variance
°L2 (refs. 31 and 32). The variance UL2 and the Wiener spectrum &r (v,w)
are related by

O'Lz = @L(O)

&S' dp,(v,w) A dw

2n§ o d(p) dp 17)
0

that is, ULZ is the value of the integrated Wiener spectrum.

Imaging System

The conversion of radiance into a discrete signal involves some sort of
photon detection and sampling mechanism. The most common mechanisms are
TV cameras and optical-mechanical scanners. In this paper we disregard the MTF
of the objective lens, so that the MTF Tt(u,w) of the imaging system (see
fig. 1) reduces to

TUw) = Tpuw) Tew)

where %p(u,w) is the MTF of the spot intensity of TV cameras or of the
photosensor aperture of optical-mechanical scanners; Tg(w) is the MTF of

the electronic filter; and w is the spatial frequency component in the line-
scan direction. The sampling interval X represents the distance between
successive line scans, and the interval Y represents the product of the line-
scan rate and the time between electronic samples. (There is, of course, no
electronic sampling in commercial TV; the signal that is generated along the
line-scan direction is transmitted as an analog signal.)

Figure 3 illustrates salient characteristics of one spot intensity pro-
file and two photosensor aperture shapes. The profile and apertures are of
equivalent size; that is,

e
SS.Tp(x,y) dx dy = Tp(0,0) =1
~00

13



(@) PSF and MTF of Gaussian spot intensity (with equivalent diameter Y)-

rpmﬂ)

i i
P
f
Sy

i S
e SRR
il SIS

(b) PSF and MTF of circular photosensor aperture (with diameter y ).

Tp(X,Y)
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(d) MTF of electronic filter (for Y=y).

Figure 3.- Properties of photon-detection mechanisms.
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It follows that Tp(0,0) = 4/1Y2 for the Gaussian spot intensity, and

4
- ((x,y) € aperture area)
Ty 2
Tplx,y) =
0 {elsewhere)

for the circular and diamond photosensor apertures. It is convenient to regard
the diameter Y of the circular aperture also as the equivalent diameter of
the Gaussian spot intensity and diamond aperture, that is, as the equivalent
diameter of the PSF of the photon-detection mechanism. The MTF's %p(v,w)

are given by the following expressions:

(a) Gaussian:

~ A , - 2

Tp {(V,w) = Tp(p) = e (myp/2) 18)
(b) Circular:

ToU,w) = T4(p) = —— a9)

? P m0/2

(c) Diamond:

2 1(myv 1 [myv

Tp(Ulw) = ginc —|— + YW sinc -\ — - YW (20)

2\ 2 2\ 2

Mertz and Gray (ref. 1) were the first to observe that reasonable spot
intensity profiles and photosensor aperture shapes of equivalent size result
in about equal blurring but that some profiles and shapes suppress aliasing
better than others. Schade (refs. 4 and 5), in particular, has shown that the
Gaussian intensity profile illustrated in figure 3(a) is advantageous for sup-
pressing aliasing, providing that sufficient overlap exists between successive
line scans.

The shape of the photosensor aperture in optical-mechanical scanners is
commonly circular, as illustrated in figure 3(b), or rectangular. To obtain
a response Tp(x,y) that is similar to the Gaussian profile would require
shading of the aperture with a variable transmittance profile. However, this
would be extremely difficult, since these apertures are typically less than a
millimeter across. Instead, as shown by Katzberg et al. (ref. 9), it is pos-
sible to accomplish a similar effect by shaping the aperture, that is, by

15




adjusting the width of the aperture to follow some curve which then adjusts the
U spatial frequency response normal to the line-scan direction. The exact
aperture shape along the line-scan direction is less important, since the effec-
tive w spatial frequency response can be reshaped by an electronic low-pass
filter. To demonstrate the improvement that can be attained with photosensor
aperture shaping, we choose the diamond shape illustrated in figure 3(c). This
diamond shape has already been shown (refs. 1, 9, 14, and 23) to be superior

(in suppressing aliasing) to the circular shape.

For the electronic frequency response we select the function given by

1 - (2yw)? (o] < 1/2y)
Te(w) = (21)

0 (lw] > 1/2%)

and plotted in figure 3(d). The cutoff frequency 1/2Y ensures sufficient
sampling (i.e., a Nyquist sampling rate) of the analog signal (and noise)
generated along the line-scan direction.

RESULTS AND CONCLUSIONS
Computational Results

Computational results shown in figures 4 and 5 account only for the blur-
ring and aliasing caused by the PSF and sampling process of line-scan photon-
detection mechanisms, whereas results shown in figures 6 and 7 account, in
addition, for the degradations caused by electronic noise and quantization.

By accounting first only for blurring and aliasing, we establish upper limits
for the information density that can be attained with the photon-detection
mechanisms evaluated in this investigation. The inclusion of electronic noise
and quantization leads to the assessment of practical systems.

Results are presented as a function of normalized_ parameters to account
for a wide range of conditions. The Wiener spectrum ¢j(V,w) of the radiance
field given by equation (16) is normalized as

al'.(u,m) = 072 EL(u,m)

where °L2 is the variance of the radiance field given by equation (17). The
mean spatial width u, of the radiance field and the sampling intervals X

and Y of the imaging system are normalized by the equivalent diameter Yy of
the PSF's. For example, for the circular aperture with Y its actual diameter,
X/Y = ¥/Y =1 represents contiguous coverage, and U,./Y =1 represents mean
spatial detail equal to the diameter of the projection of the aperture, or its
IFOV, onto the scene.

16
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Image degradation due to blurring is characterized by the (normalized)
variance °b2 as computed by (ref. 23)

1/2Y 1/2%
S 5 5;:(1),«») - T,w|2 au aw (22)
-1/2Y -1/2%

Blurring occurs when thg higher frequency components of the radiance field are
attenuated by the MTF T(U,w) of the imaging system within the sampling pass-
band; for example, Obz =0 if T(L,Ww) = (XV,Yw). Fellgett and Linfoot

(ref. 15) refer to the degradation defined by equation (22) as fidelity defect
due to loss of sharpness. Figures 4 and 5 present curves of the standard
deviation °b which show how blurring increases with decreasing sampllng inter-
vals. This increase in blurring occurs because the (fixed) MTF T(U w) of

the imaging system becomes an increasing source of degradation of the signal
frequency components that could otherwise be reconstructed as the sampling pass-
band II(Xu,Yw) increases. This effect is particularly pronounced for small
spatial detail (i.e., U,/Y < 1/3).

Image degradation due to aliasing is characterized by the (normalized)
variance 0,4 as computed by

1/2Y 1/2X ©

50y afene-d)

~1/2Y -1/2x W= n==
(m,n) #(0,0)

(23)

Aliasing occurs because displaced spatial frequency components from the sampling
51debands intrude into the sampling passband; for example, 0a2 = 0 1if

T(v w) = I(Xv,¥Y). Figures 4 and 5 present curves of the standard deviation

O, which show how aliasing decreases with decreasing sampllng intervals. This
decrease in aliasing occurs because the Wiener spectrum QL(U w) {%(U,w)lz
decreases with frequency and because the distance between sampling sidebands

1 1
(as observed in the frequency domain) increases as (-, ;), whereas the sampling
X

1 1
passband increases only as <——, —-).
2X 2y

It should be noted that blurring is only weakly dependent on differences
between the PSF of the spot intensity and photosensor apertures, whereas alias-
ing is strongly dependent on these differences, as has already been observed
in a number of previous investigations (refs. 1, 4, 5, 9, 14, and 23). The
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Gaussian profile and diamond shape are both superior (in suppressing aliasing)
to the circular shape at broad sampling intervals (X4 = Y/ > 0.5), and the
Gaussian profile is appreciably superior to both aperture shapes at narrow
sampling intervals (X/ = Y/ < 0.5). These differences in performance are
directly attributable to their MTF characteristics shown in figure 3.

The information density hj, analogous to equation (10) but without
electronic noise and quantization, is computed as

_ A ~ n
; 1/2x 1/2Y oi(u,w) 1T (v, |2 24)
hy = - S S loggy |1 + —— du daw (
2 <0 L]
-1/2X -1/2Y . n R n n\12
z z ¢L(U——,w-—) T(\)—-,(»-—)
X Y X Y
=0 n=_®
] (m,n)#(0,0) .

The corresponding sampling density hg is

.
he = — (25)
S xy

The units of h; are binits per Yz, and of hg are samples per v2. Fig-
ure 4 presents curves of the information density h;, sampling density hg,
and the ratio hj/hg vs sampling intervals. The units of hj;/hg are binits
per sample.

The curves in figure 4 were obtained for Wiener spectra that decrease with
spatial frequency as formulated by equation (16); in addition, hj; and hj/hg
are also given for a ("white") Wiener spectrum that remains constant with fre-
quency. It can be observed that the curves of h;y and hj/hg for various
mean spatial details approach each other as these details become larger until it
becomes difficult to distinguish the curves from each other (at the scale of the
drawing). This suggests that the curves for MW,./Y = 9 approach upper limits of
h; and thj/hg for the assumed conditions. On the other extreme, as the mean
spatial detail becomes smaller than MW,/Y = 1/9, the Wiener spectrum becomes
increasingly ¢onstant with frequency (within the MTF passband of the imaging
system), and curves of h; and hj/hg approach those for a white Wiener
spectrum.

The range of information per sample hj/hg is remarkably narrow for the
wide range of Wiener spectra that has been considered. Since these curves do
not include degradation due to electronic noise and quantization, they represent
an upper limit of the information per sample that can be reached with line-scan
photon-detection mechanisms for the assumed Wiener spectra and the PSF's.

23



~ Figure 5 shows results for the circular photosensor aperture with and
without the electronic filter. The latter condition represents an optical-
mechanical scanner design in which the IFOV is stepped at discrete intervals
along the y-direction rather than scanned in a continuous motion; that is,
the radiance field is spatially sampled in the y-direction as well as the
x-direction. The effect of the electronic filter (for continuous line scans)
is to increase blurring and decrease aliasing; the net effect is an improvement
in information per sample of about 30 to 45 percent, depending on sampling
intervals. This improvement represents an approximate upper limit that can be
attained with electronic filters, since the assumed filter MTF ensures suffi-
cient sampling along the y-axis. (Small changes in the response of this filter,
by changing the exponent in eq. (21) from 4 to either 2 or 8, have little
effect; a change to 2 increases blurring and decreases aliasing, and a change to
8 has the opposite effect; the effect on information per sample is negligible.)

Results shown in figures 6 and 7 account for image degradations due to
electronic noise and quantization as well as blurring and aliasing. The infor-
mation density hj 1is computed using the approximation of equation (10) given

by

1/2% 1/2Y . ~
1 v & (u,w) [T, |2
M3 5 S tosz |1+ B o wa  (26)
1/ -1/ . = ~t m n\ i~ m n\|? os\2
z Z plv -z, w-- ) fTU- - w- - + | — + k™2
X Y X Y Op
m=-~c n=-c
L (m,n)#(0,0)

The ratio 0g/0, is a convenient parameter for characterizing the electronic
signal but is not the conventional rms SNR. Here, 052 is the maximum vari-

~ A ~ R
ance of the signal 8(u,w) among all ZT(u,w) such that [T(u,w)| £ 1, given
by

0g2 = K20y 2

and Unz is the variance of the electronic noise at the output of the elec-
tronic filter, given by

1/2Y
6.2 = j; SN(m;Y) |%e(w)|2 dw
-1/2y

(Further details are given in the Appendix.) The corresponding data density
is given by equation (11) as
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h ! 1 1
= — logy K = —
d XY 2 XY

where N is the number of bits used to encode the K gquantization levels.

Both figures 6 and 7 present plots of the variation of information density
hj, data density hg, and information efficiency hj/hg with sampling inter-
vals. Figure 6 characterizes performance as a function of mean spatial detail
Hy of the radiance field for several ratios Og/0, and encoding levels n
that have been selected so that the rms magnitudes of electronic and quanti-
zation noise are equal to each other. Figure 7 characterizes performance as
a function of encoding levels n for several ratios O0g/0, and a fixed mean
spatial detail U, -equal to the equivalent diameter Y of the PSF's.

Statistical properties of the radiance field, such as mean spatial detail
or Wiener spectrum, are seldom known in practice. Therefore, it often becomes
appropriate to regard each set of curves (for different values of u,./Y) in
figure 6 as boundaries that encompass typical performance.

Constraints and Conclusions

Time versus spatial response.- When Shannon's theory of information trans-
mitted through communication channels is applied to the formulation of infor-
mation acquired with line-scan imaging systems, differences between time
(electronic) and spatial (optical) MTF's must be taken into account. A time-
varying signal can be sufficiently band-limited by practical electronic filters
to reduce aliasing to an insignificant source of degradation. Formulations of
information transmitted through communication channels have, partly for this
reason, been based on the assumption of band-limited signals. However, formu-
lations of information acquired with line-scan imaging systems cannot be
simplified by this assumption. The realizability of MTF shapes of optical
filters is constrained by the fact that their (sensitivity or transmittance)
response can never be negative. This constraint leads to MTF's that tend to
diminish very gradually with frequency, generally without a finite cutoff
(except for lens diffraction). These responses insufficiently band-limit the
radiance field prior to line~scan sampling, a condition which tends to result
in significant degradation due to aliasing. The inclusion of aliasing leads
to significant departures in the performance characteristics of line-scan
imaging systems from those of communication channels.

Continuous versus discrete entropy.- Formulations of the information
density of digital image data are subject to a somewhat arbitrary normal-
ization of the (continuous) Gaussian signal variations relative to the (dis-
crete) linear quantization intervals. We have adjusted the formulation of
information density for computational purposes so that the theoretical upper
limit of information efficiency reaches unity. This adjustment results in a
linear dynamic range that encompasses 92 percent of the (assumed) Gaussian
signal distribution.
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Information density versus spatial detail.- The information density of
discrete and digital data (figs. 4 and 6, respectively) varies comparatively
little with large variations in the mean spatial detail of the random radiance
field. For variations of the mean spatial detail by nearly 2 orders of magni-
tude (from 1/9 to 9 times the equivalent diameter of the PSF), the information
density varies by less than a factor of 3. This occurs because the small
spatial detail associated with high entropies is subject to more degradation
due to aliasing and blurring than the large spatial detail associated with low
entropies.

Information efficiency versus sampling intervals.- Information efficiency
of discrete data exhibits a distinct single maximum when displayed as a function
of sampling intervals (figs. 6 and 7). The location and magnitude of this
maximum depend on the properties of the radiance field, the PSF and sensitivity
of the photon-detection mechanism, and the number of encoding levels. Designs
favorable to maximum information efficiency have the following characteristics:

Sampling interval (X/Yy = Y/Yy) for -
0g/0p =K
Gaussian Diamond Circular
512 0.6 — -—=
256 0.6 to 0.7 0.6 to 0.7 -
128 0.7 0.7 0.6 to 0.7
64 0.7 to 0.8 0.7 to 0.8 0.7
32 —— 0.8 0.7 to 0.8
16 - -—— 0.7 to 0.8

Sampling intervals narrower than those listed in this table will improve infor-
mation density if the radiance field consists mostly of spatial detail equal

to or smaller than the PSF, while broader sampling intervals will generally
reduce both information density and efficiency.

PSF versus spatial detail.- For sampling intervals favorable for maximum
information efficiency, information density and efficiency both tend to be
maximum when the PSF of the imaging system is approximately equal to the mean
spatial detail of the radiance field (fig. 6). This result is consistent with
the earlier discussion about the conditions that lead to the theoretical upper
limit of information efficiency. These conditions require that the MTF and
sampling passband be matched to the Wiener spectrum of the scene.

Kell factor.- Sampling intervals favorable for maximum information effi-
ciency compare closely with the so-called Kell factor that evolved from early
studies (refs. 2 and 3) concerned with the selection of a line-scan interval
(or line pitch) for commercial TV cameras and displays. The Kell factor is a
measure of the number of lines required to distinguish between black and white
bars oriented parallel to the line-scan direction. According to Kell et al.
(ref. 3), "The average of readings made by several observers indicated that
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100 scanning lines were required to make 64 black and white bars distinguish-
able.” This result led to a Kell factor of 0.64. The concept of Kell factor
was readily accepted but not its numerical value. Baldwin (ref. 2) lists the
results of six different investigations, including his own, with values ranging
from 0.53 to 0.85 and an average of 0.71. However, it should be noted that the
Kell factor defines the line-scan interval relative to bar targets with widths
approximately equal to the PSF of the TV camera, whereas we define 2-D sampling
intervals relative to the equivalent diameter of the PSF itself and use random
rather than periodic targets.

Schade's recommendation.- Schade (refs. 4, 5, and in ref. 7), in extensive
and widely recognized studies of TV systems, defines line-scan intervals as a
function of the MTF of the imaging system. His recommendation for a lower and
upper limit on the line-scan interval, expressed in our notation, is

1 1
A - SRy s
2uT=0.05 UT=0.4

where vy3=0.05 and vu3=0.4 are the frequencies at which the MTF normal

to the line-scan direction is 0.05 and 0.4, respectively. For the photon-
detection mechanisms considered in this paper, this recommendation results in
0.44 £ X/y ¢ 0.83 for the Gaussian spot intensity, 0.49 £ X/y £ 0.78 for the
diamond photosensor aperture, and 0.44 £ X/y & 0.63 for the circular photo-
sensor aperture.

Quantization versus electronic noise.- Information density ceases to
increase significantly with increasing quantization levels when the number of
guantization levels «k exceeds the rms signal-to-noise ratio og/op. Infor-
mation efficiency begins to decrease significantly with increasing quanti-
zation levels when «k exceeds 40g/0op. Thus, the relationship between
number of quantization levels and rms signal-to-noise ratio should be such that
0g/0pn < ¥ < 405/0p,. This conclusion, however, is strongly dependent on the
assumption that was made about the (linear) dynamic range of the imaging system
with respect to the (Gaussian) probability distribution of the magnitude of the
radiance field.

CONCLUDING REMARKS

By tying together the statistical properties of the radiance field and the
spatial response (PSF or MTF), sensitivity, and sampling and quantization inter-
vals of the imaging system into a single figure of merit, information theory
provides an obviously attractive approach for optimizing the performance of
line-scan imaging systems for a specific application, especially if this appli-
cation includes digital data transmission. Although the information content of
the image that has been reconstructed from the digital data cannot be directly
measured with practical instrumentation for an objective experimental evalua-
tion, the component and system MTF and noise characteristics required to com-
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pute information content are routinely measured. The Wiener spectrum of scenes
can also be measured but is often unknown.

Optimum information density and efficiency require that the MTF and sam-
pling passband match the Wiener spectrum of the radiance field. Computational
results for statistical properties of natural radiance fields and the responses
of common imaging mechanisms indicate that information density and efficiency
are not strongly sensitive to variations in typical statistical properties of
the radiance field and that the best performance is approached when the sam-
pling intervals are about 0.5 to 0.7 times the equivalent diameter of the PSF.
These results are consistent with the experimental and theoretical results
obtained by earlier investigators concerned with the performance and design of
TV cameras.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

July 6, 1981
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APPENDIX

FORMULATION FOR PRACTICAL DESIGN TRADEOFF STUDIES

In this appendix we express the information density hj formulated by
equation (10) in terms of parameters that are commonly used in practice and
provide details about the approximations that were made for equation (26),
which was used to generate computational results.

The formulation of equation (1) is simplified by separating the spectral
and spatial dependence of the radiance field and imaging system response,
with the parameter K accounting for the spectral characteristics. Actually,
both the radiance field and the system response are wavelength dependent,
and the spatial convolution should therefore be integrated over wavelength
(ref. 23). However, following common practice it is convenient here to let
K be the steady-state gain of the conversion of the radiance into the photo-
sensor signal as given by

o

T 2
K = " D2Y2'j° L(A) T(A) ax (A1)
0

where D 1is the lens aperture diameter, <Y 1is the equivalent diameter of
the PSF (or IFOV) formed by the spot intensity or photosensor aperture, L(}A)
and T(A) are the spectral properties of the radiance field and system
response, respectively, and A is wavelength.

The Wiener spectrum of the photosensor signal, sampling sidebands, and

electronic noise given by equations (6), (7), and (8), respectively, can be
rewritten as

dg (v, ) = K202 3 (u,w) |T(u,w) |2 (a2)

o (o]

2
~ n ~ m n ‘
®_(v,w;X,Y) = K2072 E E arf, % -2 U - == - (a3)
a ’ 4 L (PL v x, [ 7 T xl v

m=-® n=—co

(m,n)#(0,0)
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APPENDIX

and

o
~ 2 Ay / n ~ n 2
dn ;YY) = oy <I>N< 3 Te(‘*’ "3 (Ada)

n=-o

The prime denotes a normalized quantity, and OLZ and ONZ are the variances
of the radiance field and electronic noise, respectively. If the electronic
filter MTF ?e(m) sufficiently band-limits the electronic noise, then equa-
tion (A4a) can be reduced to

~

3y (:Y) = og? Oy () l?e(m)lz (Adb)

Substituting equations (A2), (A3), (Ad4b), and (9) into equation (10}
yvields

, /o 81 (v 13w |2
hy = 3 logy |1 + — = - —— | du dw
-172% -1/2Y = 2 n Y o a2 fon V., - c2
EEQ'LU——,w-- v - -, w=- = + =] ent) [Te)]2 +
. X Y Koy, 3
m= n=-o
(m,n)#(0,0)
(A5)

Equation (A5) reduces to equation (26) for c? = 3, 0Og = KOy, and

1/2y
~ ~ 2
0,2 = op2 S‘ Op() |Telw)]* aw
=172y

The (normalized) Wiener spectrum .¢§(m) of the electronic noise tends to
either remain constant or to decrease with frequency, and the MTF of the
low-pass electronic filter Tg(w) usually remains nearly constant out

to some frequency near the sampling passband and then decreases rapidly.
Consequently, Op < Oy.
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SYMBOLS
rectangular isoplanatism patch
area of rectangular patch, m2

constant that relates range of signal fluctuations to range of
quantization

spatial function

spatial frequency spectrum of g(x,y)., m2

data density, bits/m2

information density, binits/m2

information efficiency, binits/bit

sampling density, samples/m2

quantity of data in A, bits

quantity of information about A in digital data, binits
first~order Bessel function

steady-state gain of the conversion of radiance into electronic
signal, A-W"!

radiance field, W-m~2

sampling counts along x- and y-axes, respectively

electronic noise, A

= x2 + y2

reconstructed image, A

signal, A

imaging coordinates, m

sampling intervals, m

equivalent diameter of the point-spread function of the photon-

detection mechanism (i.e., of the Gaussian spot intensity and
the circular and diamond photosensor aperture), m



S(x,y)

two-dimensional unit impulse function, m—2

number of binary encoding levels, bits

number of quantization levels

wavelength, m

(expected) mean value of spatial widths of radiance field, m

= V2 + 2

standard deviation, W-m~2

point-spread function (PSF) or spatial response
modulation-transfer function (MTF) or spatial frequency response

spatial frequencies along x- and y-axes, respectively, m!

(cycles—m'T)
autocovariance, W2-m~4
Wiener (or power density) spectrum, W2-m—2 (wz—m‘4/cyc1esz—m‘2)
spatial frequency passband of sampling lattice, m-2 (cycles/mz)
sampling function
convolution
frequency domain

(prime) normalized quantity

Subscripts:

aliased noise, or sidebands generated by sampling
blurring

electronic filter

lens

radiance field

electronic noise at filter output

electronic noise at filter input

photosensor aperture or spot intensity
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quantization

analog signal (without noise)
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